Unleashing natural IL-18 activity using an anti-IL-18BP blocker antibody induces potent immune stimulation and anti-tumor activity

Dr. Pierre Ferré
Vice President,
Pre-Clinical Development, Compugen

SITC 38th annual meeting, 3 Nov, 2023
Abstract 550
Safe Harbor Statement

This presentation contains “forward-looking statements” within the meaning of the the Securities Act of 1933 and the Securities Exchange Act of 1934, as amended, and the safe-harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements can be identified by the use of terminology such as “will,” “may,” “expects,” “anticipates,” “believes,” “potential,” “plan,” “goal,” “estimate,” “likely,” “should,” and “intends,” and similar expressions that are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. These forward-looking statements involve known and unknown risks and uncertainties that may cause the actual results, performance or achievements of Compugen to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements, including statements regarding the timing and success of our clinical trials, enrollment of patients, type of clinical trials, presentation of data and our cash position and expenditures. Among these risks: Compugen’s operations could be affected by the outbreak and spread of COVID-19, Compugen’s business model is substantially dependent on entering into collaboration agreements with third parties, and Compugen may not be successful in generating adequate revenues or commercialize its business model or control its expenditures. Compugen also may not meet expected milestones in its development pipeline and may also be unable to enroll patient to its clinical trials or to present data. Moreover, clinical development involves a lengthy and expensive process, with an uncertain outcome and Compugen may encounter substantial delays or even an inability to begin clinical trials for any specific product or may not be able to conduct or complete its trials on the timelines it expects. These and other factors, including the ability to finance the Company, are more fully discussed in the “Risk Factors” section of Compugen’s most recent Annual Report on Form 20-F as filed with the Securities and Exchange Commission (“SEC”) as well as other documents that may be subsequently filed by Compugen from time to time with the SEC. In addition, any forward-looking statements represent Compugen’s views only as of the date of this presentation and should not be relied upon as representing its views as of any subsequent date. Compugen does not assume any obligation to update any forward-looking statements unless required by law. Certain studies and data presented herein have been conducted for us by other entities as indicated where relevant. Intellectual property, including patents, copyrights or trade secret displayed in this presentation, whether registered or unregistered, are the intellectual property rights of Compugen. Compugen's name and logo and other Compugen product names, slogans and logos referenced in this presentation are trademarks of Compugen Ltd. and/or its subsidiary, registered in the U.S.A., EU member states and Israel.
Disclosure

Employee of Compugen LTD.
Cytokines: powerful tools with challenging therapeutic window

- Short half life
- Pleiotropy
- Vascular leak syndrome
- Cardiotoxicity

IL-2
- STAT5

IL-15
- STAT5
- Short half life

IL-12
- STAT4
- Short half-life
- Systemic inflammation
- Myelotoxicity
- Hepatotoxicity

Pleiotropy, toxicity, short half-life severely limit the therapeutic use of cytokines

Propper DJ. et al, 2022
IL-18 stimulates both innate & adaptive immune system

IL-18 is:
- An effector cytokine
- Secreted upon inflammasome activation
- Upregulated in the TME

DAMPs- Damage-associated molecular patterns
TME- tumor microenvironment
IL-18 binding protein is a natural inhibitor of IL-18

IL-18 binding protein (BP):

- Binds IL-18 and blocks its immune stimulatory activity
- IL-18BP secretion is increased via an IL-18 negative feedback mechanism
COM503, a potential first-in-class anti-IL-18BP blocker antibody that unleashes endogenous IL-18 in the TME

COM503:
Has the potential to induce potent anti-tumor responses and pronounced TME-localized immune modulation
Compugen identified IL-18BP while querying for TAM negative feedback immunosuppression mechanism

IL-18BP is upregulated in myeloid populations in the TME across indications (scRNA data)

IL-18BP is expressed in the TME across indications (ELISA on tumor supernatants)

Internal analysis of: S. Cheng et al. Cell 2021

TAM- Tumor associated macrophage
IL-18BP is upregulated following immune checkpoint blockers treatment

Breast cancer (anti-PD-1)
- scRNA: EGAD00001006608_2

Melanoma (anti-CTLA-4 & anti-PD-1)
- Bulk expression: GSE91061
- scRNA: GSE120575

Basal cell carcinoma (anti-PD-1)
- scRNA: GSE123814

NSCLC (anti-PD-(L)1)
- Zhou T. et al, 2020
- p=0.0003
- p<0.0001

IL-18BP expression in different types of cancer following immune checkpoint blockers treatment.
Unlike other cytokines, inflammasome induced cytokines such as IL-18 and IL-1β are abundant in the TME.

IL-18 is naturally blocked by endogenous IL-18 binding protein.
IL-18 pathway is elevated in the TME across indications

- IL-18 levels are elevated in the TME compared to levels in the serum
- IL-18 is expressed in the TME across indications
- IL-18Rα is induced on TILs in the TME

TILs- Tumor infiltrating lymphocytes
IL-18BP-bound IL-18 levels in the TME are above the amount required for T cell activation in vitro

IL-18 activates TILs at concentrations from ~1ng/ml

In most tumors IL-18BP-bound IL-18 level is above ~1ng/ml

IL18 bound = estimated from IL18 total minus IL18 free (measured in 2 ELISA kits)

Total IL18 levels were measured using MBL ELISA kit (R&D #. 7620)
Free IL18 levels were measured by in house established ELISA assay
The concept of anti-IL18BP antibody

1. IL-18 is naturally present in human tumors at levels sufficient to stimulate T and NK cells

2. High levels of IL-18BP in the tumors block its IL-18 anti-tumor activity

3. IL-18 endogenous levels in blood are low, and the IL18 receptor is induced in the tumor

Blocking IL-18BP should unleash IL-18 activity to increase the immune stimulation predominantly in the tumor and not in blood
Compugen developed COM503, a fully human, high affinity anti-IL18BP Ab that restores human TIL and NK cell activity

COM503 restored TILs activity

COM503 restored NK cell activity

COM503 enhanced T-cell activation in human dissociated tumor cells assay

- **IFNγ**
 - IL-18 only: 100
 - Isotype: 90
 - COM503: 110

- **TNFα**
 - IL-18 only: 100
 - Isotype: 90
 - COM503: 110

- **GZMB**
 - Media: 25%
 - COM503: 56%
 - Pembro: 52%
 - Pembro+COM503: 56%

- **IL-2**
 - Media: 50%
 - COM503: 29%
 - Pembro: 50%
 - Pembro+COM503: 29%

- **IL-12**
 - Media: 58%
 - COM503: 138%

- **IFNγ**
 - Media: 25%
 - COM503: 56%
 - Pembro: 38%
 - Pembro+COM503: 80%

- **TNFα**
 - Media: 58%
Mouse and human IL-18 pathway share similar biological properties

Mouse IL-18Rα is expressed and induced on T cells in mouse TME

Similar pattern expression of IL-18 and IL-18BP in serum and TME

High-affinity interaction between IL-18:IL-18BP
Anti-IL-18BP surrogate Ab demonstrates monotherapy activity across murine syngeneic tumor models

αIL-18BP Ab inhibited tumor growth in B16F10-hmgp100 mouse melanoma model

αIL-18BP Ab inhibited tumor growth in MC38OVA_{dim} mouse CRC tumor model

αIL-18BP Ab inhibited tumor growth in E0771 orthotopic mouse breast tumor model
Anti-IL-18BP surrogate Ab demonstrates combo activity with anti-PD-L1 and induces immune memory in E0771

αIL-18BP Ab + αPD-L1 Ab inhibited tumor growth in E0771 orthotopic mouse breast tumor model

αIL-18BP Ab monotherapy induced immune memory
IL-18BP blockade increases T cell numbers, effector state and clonal expansion in the TME in murine tumor model

αIL-18BP Ab increased T cells numbers in the TME

<table>
<thead>
<tr>
<th># CD3/mg tumor</th>
<th># CD4/mg tumor</th>
<th># CD8/mg tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5×10^4</td>
<td>3×10^3</td>
<td>1.5×10^4</td>
</tr>
<tr>
<td>109% 0.015</td>
<td>94% 0.014</td>
<td>108% 0.04</td>
</tr>
</tbody>
</table>

- Isotype control
- αIL-18BP

αIL-18BP Ab increased T cell clonal expansion suggesting Ag-specific immune response

- Isotype control
- αIL-18BP

αIL-18BP Ab induced the expansion of polyfunctional non exhausted T cells in the TME

- Isotype control
- αIL-18BP
IL-18BP blockade increases proinflammatory myeloid populations and pro-inflammatory cytokine secretion in murine tumor model

αIL-18BP Ab increased the expansion of proinflammatory macrophages in the TME

αIL-18BP Ab increased activated DC population in the TME

αIL-18BP Ab increased proinflammatory cytokine secretion in the TME
Anti-IL-18BP Ab modulates tumor microenvironment without affecting the periphery in murine tumor model

Monotherapy with anti-IL-18BP Ab immune-modulated TME

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Mean ± SEM</th>
<th>Fold Increase</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFNg pg/ml serum</td>
<td>Isotype Control</td>
<td>100</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>150</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>200</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>250</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>300</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>350</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>400</td>
<td>400</td>
<td>ns</td>
</tr>
</tbody>
</table>

Monotherapy with anti-IL-18BP Ab did not modulate peripheral immunity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>Mean ± SEM</th>
<th>Fold Increase</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td># CD8 cells/spleen</td>
<td>Isotype Control</td>
<td>100000</td>
<td>100000</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>αIL18-BP</td>
<td>100000</td>
<td>100000</td>
<td>ns</td>
</tr>
</tbody>
</table>

Immune modulation restricted to tumor site, in contrast to therapeutic recombinant cytokines given systemically
Anti-IL18BP Ab is expected to have a better therapeutic window than recombinant cytokines.

Administration of anti-mIL-18BP Ab to mice did not affect serum cytokines in contrast to engineered mouse IL-18.*

*Engineered IL-18 does not bind to IL18BP but retains its binding to IL-18R.

Administration anti-mIL-18BP Ab to mice did not result in splenomegaly in contrast to rIL-15:IL15Ra.
IL-18 is upregulated in the TME but is naturally blocked by IL-18BP

Blocking IL-18BP in vivo inhibits tumor growth as monotherapy and in combination with anti-PD-L1

Immune modulation following treatment with anti-IL-18BP Ab is restricted to the TME suggesting favorable therapeutic window, in contrast to recombinant therapeutic cytokines given systemically

COM503, a human IgG4 high affinity anti-IL-18BP blocker Ab, unleashes IL-18 to activate T and NK cells

IND expected in 2024

Blocking IL-18BP is a novel approach to harness cytokine biology for cancer therapeutics
Thank you! See our poster #550 on Saturday 4

Acknowledgments:
Compugen:

Biobank, Department of pathology, Rabin Medical Center:
Adva Levy Barda

Department of Surgery, Rabin Medical Center:
Eran Sadot

Department of Pathology, Rabin Medical Center:
Yulia Strenov, Natalia Yanichkin

Gynecologic Oncology Division, Helen Schneider Hospital for Women, Rabin Medical Center:
Ram Eitan, Ariella Jakobson-Setton